

ClickMiner: Towards Reconstructing User-
Browser Interactions from Network Traces

Christopher Neasbit†,
Roberto Perdisci†‡, Kang Li†, and Terry Nelms˥‡

† Department of Computer Science, University of Georgia
‡ College of Computing, Georgia Institute of Technology

˥ Damballa, Inc.

cjneasbi@uga.edu, {perdisci,kangli}@cs.uga.edu, tnelms@gatech.edu

Application Scenario

● An enterprise has made an investment to record a window of ingress
and egress network traffic from it's local network

● This data could aid in the forensic investigation of security incidents

– ex. Web Security Incidents
● Phishing, Social Engineering, Data Leakage

● How do we effectively analyze such large amounts of web traffic?

Application Scenario

The modern web is becoming increasingly complex.

Increasing Semantic Gap between network traffic
and user actions

Application Scenario

Social Engineering Malware Download Scenario
● User searches for a crack to a particular game
● User is directed to a dubious site from the search results
● User downloads and installs a binary infected with malware

from said site

Application Scenario

Requests: 328
Edges: 287
Clicks: 6
Time: 2m 56s

Application Scenario

Requests: 6
Edges: 5
Clicks: 6
Time: 2m 56s

Interesting
user-browser interactions

“What was a user’s browsing behavior during a
time window preceding (and including) a social
engineering or phishing attack, or other
relevant security incidents and anomalies?”

User-Browser Interaction

Click
– A user interaction that causes the browser to

initiate an HTTP request for a new web page.
● Mouse click on an image with an onclick event
● Touch gesture on a form submit button
● Pressing Enter while focused a link
● Typing a URL into the address bar
● Clicking on a bookmarked link

ClickMiner's Goals

● Accurately reconstruct the steps taken by the
user to reach the attack page

● Filter out irrelevant requests

Previous Approach
Referrer Graph
● Node: HTTP request
● Edge: Defines request referrer → request referred

relationship

ReSurf*

● Referrer-based click inference (RCI)
● Build Referrer graph from traffic
● Prune referrer graph based on heuristics
– ex. Timing information between requests

*G. Xie et al. ReSurf: Reconstructing web-surfing activity from network traffic. In IFIP
Networking Conference, 2013, 2013.

ClickMiner Approach

“Let the browser do the heavy lifting.”

ClickMiner Approach

Replay web traffic within an instrumented browser.

Contributions

● ClickMiner, a system dedicated to automatic
reconstruction of clicks from web traffic.

● Evaluate both ClickMiner and RCI in a user
study.

● Case study involving a real social engineering-
based malware download attack.

System Design

Replay Algorithm
(Simplified)

Replay Algorithm
(Simplified)

Replay Algorithm
(Simplified)

Click Graph

Nodes: annotated HTTP Requests
– = source page
– = element clicked
– = request generated

Edge:
– reached as a consequence of

(pw , ew , qw)→(p y ,e y , q y)

p y qw

(p ,e , q)

p
e

q

Additional Challenges

● Request URLs with dynamic content
● JavaScript mediated requests
● Browser Cache

Additional Challenges

Dynamically generated request can have different URLs
between recording and replay
Request URLs with dynamic content
● URL parameter values

– Randomly generated
– Time-dependent
– System-dependent

● Dynamically generated paths

Replay proxy utilizes an approximate matching algorithm for
HTTP requests

Additional Challenges

Approximate matching algorithm compares HTTP
requests based on:

If a match is found its response is served otherwise
respond with HTTP 404.

Additional Challenges

JavaScript Mediated Clicks
– DOM elements with JavaScript event handlers

Network-oriented best effort approach
– Discover JavaScript mediated elements
– Activate each one
– If expected HTTP request is generated then we've

found the element
● Otherwise respond with HTTP 204

Additional Challenges

Browser Cache
● Requests satisfied by the browser cache exhibit no response

payload
● Requests with missing response payloads can not be

replayed.
● Best effort replay skips gaps to continue processing what

traffic remains.

Augmented Click Inference

ClickMiner might fail to detect click via replay
– Leverage the referrer graph
– Fill in click paths with partial click nodes

(Click Graph) + (Referrer Graph)
↓

Augmented Click Graph

Augmented Click Inference

Augmented Click Inference

Evaluation
● Data Requirements

– Clicks recorded at the browser level
● Ground truth

– Raw network traces
● User Study

– Users performed generic web browsing
activities

– 21 Participants, 24 Traces
– 2 Groups

● Group 1: browser caching disabled
● Group 2: browser caching enabled with

“warmed up” cache

Results

Summary
– Avg. between 82% and 90% of clicks correctly

reconstructed
– Avg. between 0.74% and 1.16% false positives
– Greatly outperforms referrer-based approach

Results

Results

Caching Disabled

Results

Caching Enabled

Case Study

Malware download incident from user study
– User visited bing.com
– User searched with term “far cry 3 hackz tools crack”
– User clicked on allhackz[dot]net from search results
– User clicked on “Download” button, opened two pages

● gameadvert[dot]com
● wellmediaonline[dot]com

– From wellmediaonline[dot]com download started via
script from effortlessdownload[dot]com

Case Study

Requests: 328
Edges: 287
Clicks: 6
Time: 2m 56s

Case Study

Requests: 328
Edges: 287
Clicks: 6
Time: 2m 56s

Case Study

Requests: 6
Edges: 5
Clicks: 6
Time: 2m 56s

Conclusion

● Importance of aiding the forensic analysis of web
traffic traces

● ClickMiner, reconstructs user-browser interactions
from network traces

● Through a user study we demonstrate:
– Correctly reconstruct between a 82% and 90% of clicks
– Low false positives
– Outperforms exclusive referrer-based approach

