
Evolving Mathematical Functions with Genetic
Algorithms - A Team Project on Artificial Intelligence

ZHIGUANG XU, CHRIS NEASBITT, JARED SUMMERS, BILL CONKLING
Department of Math and Computer Science

Valdosta State University
Valdosta Georgia, U.S.A.

Abstract - In contrast to most of the senior level
Artificial Intelligence (AI) courses where AI is taught in
the jargon of theoretical computer science with crowd of
complex matrix algebra and differential equations, I
demystify the subjects and demonstrate that most
fundamental ideas behind AI like Neural Networks,
Genetic Algorithms, and Fuzzy Logic, etc, are
wonderfully simple and straightforward. I give students
team projects as opportunities to be exposed to how
intelligent systems are actually built up and implemented.
In this paper, we discuss such a project developed by a
group of three students for evolving mathematical
functions with Genetic Algorithms (GA) in Java. In the
project, GA is used to solve a symbolic optimization
problem where sequence of instructions collectively
forming a candidate math function is evolved to represent
a reasonably complicated target math function. Students
were very interested and deeply involved in the
development of this project since they actually applied
the GA theory in practice. And this is the best way AI can
be taught and grow, as I sincerely believe.

Keywords: Generic Algorithms, Artificial Intelligence,
Fitness Evaluation

1 Introduction
Traditionally, Artificial Intelligence (AI) is taught as

a senior level theoretical computer science course. Most
of the literature on AI is expressed in the jargon of
computer science, and crowed with complex matrix
manipulations and differential equations [1]. This, of
course on one hand, makes the subjects sufficiently
respectful, but on the other hand, lacks of the applied
opportunities that the students can take to implement the
ideas behind those complicated mathematical formulas
and solve some real-world problems. My goal of teaching
AI is to demystify some popular AI algorithms so that our
undergraduate computer science students without hard-
core math background can still witness that the AI-based
intelligent programs they write themselves are able to
solve otherwise-hard-to-solve problems. As a result,
students very much attracted in this way are more likely
willing to make more efforts to explore AI in depth and
show their creativity in contributing to this exciting area
in the future.

In this paper, I will discuss a team project three of
my students did when they took my CS4820 Artificial
Intelligence course in the fall of 2005. In the project,
students were asked to use GA to solve a symbolic

optimization problem where sequence of instructions
collectively forming a candidate math function is evolved
to represent a reasonably complicated target math
function. The candidate function, which naturally
becomes a GA individual/chromosome, is evaluated on a
STack-based virtual Machine (STM). The target function
is received in the form of human-readable strings and
compiled directly into Java bytecode via Java
Expressions Library (JEL). The fitness value of each
individual/chromosome function, which is what GA tries
to optimize, is the difference between the resulting values
generated by STM to what is expected per our JEL-
parsed target function. Details of the project will be
presented in the subsequent sections in this paper. As
witnessed by the running outputs, our GA system is able
to quickly converge to the desired target, given that the
values of various GA parameters are appropriately set up.
(Besides the GA project, in the same course, there are
also other two AI projects on Artificial Neural Networks
and Fuzzy Logic respectively, which I will discuss in
other papers.) Students are motivated to create a
generalized genetic algorithm simulation that follows the
principles of object-oriented design to deliver
extensibility and ease of use. In this project, the interface
between the AI core and its application (i.e. the evolution
of sequence of instructions to a math formula) is clearly
established. Therefore, the intact core could in the future
potentially solve problems of interest to students such as
Hamiltonian Path problems and others in the realms of
linear algebra and graph theory. This project comes with
a simple Graphical User Interface (GUI). The GUI allows
the user to run the program without any knowledge of the
command prompt. It offers easy access to change any
variable without needing to know any commands or use
any command line arguments. For any user not familiar
with the command line they can still use the program and
see very clear output. The running output data are
automatically redirected to scilab, a free matlab-like
scientific software package, and plotted as figures for
further performance evaluation.

In the following, I start to present implementation of
GA as a general tool. Important GA components like GA
operators, GA fitness evaluation process, etc, are
explored in depth. Then I will discuss a Stack-based
virtual Machine (STM) based on which the candidate
functions generated by GA are evaluated. The STM idea
is inspired by a similar example in [2]. Java Expressions
Library (JEL) will be introduced next as a handy tool that
gives the project the ability to accept any string-based

target function that users type in at runtime without the
use of any external file or the necessity of restarting the
program. Finally, some sample running output figures
obtained by executing the project and plotted in scilab are
presented and discussed. Apparently, GA is able to
successfully converge to some fairly complicated target
functions in some reasonable time. We will conclude the
paper with our conclusions and future developments.
Figure 1 shows an overview of the project.

JEL parser

String-based
Target Function

GA core

STM

GA generated Function
that matches the Target Function

Scilab

Fig. 1 Overview of the project

2 Implement Genetic Algorithms
(GA) as A General Tool

In natural evolution, species search for increasingly
beneficial adaptations for survival within their complex
environments. The search takes place in the species’
chromosomes where changes, and their effects, are
graded by the survival and reproduction of the species.
Survival of the fittest in nature is the ultimate fitness
function [1]. The Genetic Algorithms (GA), developed by
John Holland [5] to simulate the natural evolution, is a
search algorithm that operates over a population of
encoded candidate solutions to solve a given problem. In
this project, students are asked to implement in Java a
full-fledged GA core as a general tool that they can
utilize to tackle with various problems. Figure 2 [1]
illustrates the flow chart of a basic GA. Some other
interesting developments in GA could be found in [3,4,6]

2.1 GA Individuals
First of all, MAX_CHROMS numbers of

individuals (or interchangeably called chromosomes) are
generated. Each chromosome contains
MAX_PROGRAMS genes, where MAX_CHROMS and
MAX_PROGRAMS are typically application-dependent
and adjustable constants. Each gene, typed as an integer,
is initially assigned a value randomly picked from a valid
range, which is also application-dependent. Note, for
simplicity, in this project, MAX_CHROMS,
MAX_PROGRAMS, and valid range of gene values are
all defined as constants and we will discuss them later,
but in reality, different chromosomes can have different
number of genes, and each gene can be initialised from
different sets of values.

2.2 GA Termination Criteria
Right after every new generation of chromosomes

including the initial one is populated, the fitness value of
each chromosome is evaluated based on some
application-defined process. We will discuss such a
process later in section 3.

Start

Generate a polulation of individuals size MAX_IND:
x(1),x(2), ... x(MAX_IND)

Each individual contains various lengths of genes

Calculate the fitness of each individual :
f(x(1)),f(x(2)), ... f(x(MAX_IND))

Is the termination criterion
satisfied?

Select a pair of individuals for mating:
Roulette wheel selection

With the crossover probability Pc, exchange parts of two selected individuals
and create two offspring

With the mutation probability Pm, randomly change the gene values in the
two offspring individuals

Place the resulting individuals in the new population

Is the size of the new population
equal to MAX_IND?

No

Replace the current individual population with the new population

End

No

Yes

Yes

Fig. 2 Flow Chart of a Basic GA

Next, we need to determine if it is time to terminate
the program, which is typically governed by a constant
MAX_GENERATIONS. When GA has experienced
MAX_GENERATIONS number of generations, we quit.
But sometimes, it is hard to set up this threshold value as
a fixed figure – on one hand, if we set it too large, when
testing simple functions, you have to wait a unnecessarily
long time until the program stops by itself even though
you knew it has converged and solved the problem long
time ago; on the other hand, if you set it too small, when
testing relatively more complicated functions, you have
to take the risk of terminating the GA program too early.
A better way is to initialize the constant with a large
number first, and adjust it dynamically while the program
is running (we call this accelerated learning). As students
did in this project, accelerated learning has been
implemented by tracking a run which corresponds to
times when the system has reached and sustained a peak
of maximum fitness value with few interruptions, after a

sufficiently long run the system may terminate prior to
the MAX_GENERATIONS.

2.3 Selecting Parents: Roulette Wheel
Selection
If neither the condition for accelerated learning is

satisfied, nor has the maximum number of generation
passed, we need to select a pair of chromosomes as
parents for mating from the current population. Parent
chromosomes are selected with a probability related to
their fitness. The higher the fitness value, the healthier
the chromosome is, and the better chance it is selected.
The most popular selection algorithm is Roulette Wheel
Selection (RWS). It operates on the principal that a
chromosome’s chances of being selected are proportional
to that chromosome’s fitness compared to the overall
population. Unfortunately, this classic RWS won’t work
well for our GA system with such a large number of
chromosomes (sometimes 3000+ chromosomes per
generation). Therefore in this project, we calculate this
probability as a chromosome’s fitness divided by the max
fitness value in the current generation. We then check to
ensure that the chromosome under study is at least greater
than the minimum fitness of the generation. In other
words, we don’t select from the least fit of the population
(elitist in some manner). We then generate a random
number (between 0 and 1) and compare it to our
probability value. If the random number is less than the
probability value, we select the parent. Otherwise, we
continue to the next chromosome. The parent selection
process is very important to GA evolution because it
makes sure that the next generation is better than its
predecessor with respect to the distance to the target and
that evolution is going towards the right direction.

2.4 GA Operators
Once two parents are selected with probability

related to their fitness values, the following GA operators
are applied for reproducing offspring chromosomes.
 We first check to see if we are to perform the
crossover operation governed by the probability Pc
(typical valued as 0.7~0.8). If so, we calculate the
crossover point by random based on the length of the
chromosomes. Then the two parent chromosomes break
at the crossover point and exchange the chromosome
parts. Mare sure the crossover point is neither the first nor
last gene of the chromosome since if so there will be no
crossover actually occurring. Note, it is perfectly possible
that the offspring chromosomes are just exact clones of
their parents if we choose not to crossover.
 The next step is to perform mutation. Each gene has
a very small chance to be simply redefined to a new valid
value, based on the mutation probability Pm (typical
valued as 0.01~0.02). The role of mutation is to provide a
guarentee that the GA search is not trapped on a local
optimum. The mutation probability Pm can not be
assigned a harmfully big number since if so it will make
the system unstable. The range of valid values for genes

is application dependent and will be discussed in section
3.
The parent selection and offspring reproduction process
described above continues until the size of the new
generation reaches MAX_CHROMS, at which time we
replace the old generation with the new one. Generation
after generation, GA attempts to maintain the balance
between the exploration for generating new chromosomes
and exploitation of discovered information which fits the
environment best. As a result, GA is expected to solve
and optimise solutions to problems that are otherwise
very hard to solve.

3 Stack-based Virtual Machine
(STM)

As described in section 2, it is up to the application
what the range of valid gene values is, what a
chromosome (i.e. a sequence of genes) represents, and
how to evaluate the fitness of a chromosome.

Table 1: Simple Instruction Set

Instruction Description

DUP Duplicate the top of the stack (A
=> AA)

SWAP Swap the top two elements of the
stack (AB => BA)

MUL Multiply the top two elements of
the stack (2 3 => 6)

ADD Add the top two elements of the
stack (2 3 => 5)

OVER Duplicate the second item on the
stack (AB => BAB)

NOP No operation (filler)

Consider a simple instruction set for a stack
architecture on a virtual computer [2]. The virtual
machine has no registers, only a stack for which
instructions can manipulate the values on the stack. Our
virtual machine recognizes only 6 instructions, shown in
the table 1. These instructions are very simple, but can be
used to solve a variety of functions. For example, if we
want to compute the square of the top element of the
stack, the following instruction sequence could be used
(assuming the top of the stack contains our input value):
DUP_MUL. This sequence duplicates the top of the
stack, then multiplies the two together, and finally pushes
the product back to the top of the stack. Note, NOP can
be inserted anywhere in the instruction sequence without
changing the definition of the corresponding function
(e.g. NOP_DUP_ NOP_ NOP_ MUL is the same as
DUP_ MUL).

3.1 STM instructions to GA Chromosomes
The range of valid values for each GA gene is

naturally the set of six STM instructions above. When
being initialized or mutated, GA genes are not allowed to
have any other out-of-range value. Consequently, a GA
chromosome is constructed as a sequence of valid STM
instructions, which potentially respresents a STM-
encoded mathematical function that aims at matching the
user-provided target function. For example, if the stack
contains three independent variables x, y, and z, from to
to bottom, the chromosome
MUL_SWAP_DUP_SWAP_OVER_NOP_ADD_ADD_NOP
_SWAP_NOP_ADD will represent

zxyzyxf 3),,(. The figure 3 shows the

dynamics of this chromosome.

x

y

z

xy

z

z

xy

z

z

xy

z

z

xy

z

z

z

xy

MUL SWAP DUP SWAP OVER NOP

z

z

z

xy

2z

z

xy

3z

xy

3z

xy

xy

3z

xy

3z

ADD ADD NOP SWAP

xy+3z

NOP ADDNOP

Fig. 3 A GA Chromosome Evaluated on the STM

Remember in section 2.1, we mentioned
MAX_PROGRAM as the length of chromosomes and
MAX_CHROMS as the size of a GA generation. It
turned out that 12 and 3000 are some reasonable values
from them respectively. They are surely adjustable.

3.2 Fitness Evaluation
The same group of input independent variable

values will be presented to both the JEL-parsed user-
defined target function and the candidate function in the
form of a STM-based GA chromosome (section 3.1). As
a result, two output values are computed.

Now, how do we evaluate the fitness of this
chromosome? This is where creativity comes into play.
There are tons of methods out there we can choose from.
But what we need to keep in our mind is – what we
eventually want is the smaller the difference between the
target output and the output produced by the function
encoded in the chromosome (or the smaller the error),
the larger the fitness of that chromosome. Next, I will
present what we did, and it seemed to work.

 If the STM that evaluated the candidate function
exited successfully (no error was reported), we give it a
TIER1 value (1, for example) and continue to the next
step. Otherwise we just give it a zero and quit.

 If only one value was left on the stack, we add a
TIER2 value (20, for example) to the current fitness and
continue. Otherwise we quit with just a TIER1 value.
 If the top of the stack was the correct value (the same
as the target output), we add in a TIER3 value (400, for
example) to the current fitness. Otherwise, we add to it a
faction of the TIRE3 value with regard to the error, i.e.,

3
1

1
TIER

error

 where error is defined as the

absolute difference between the two output values.

To avoid a chromosome from providing the correct
answer, but working on one particular group of input
variable values only, we test the chromosome a number
of times with different combinations of input variable
values (e.g. 10 times defined by the constant COUNT).
From the discussion above, we can easily see that the
largest possible fitness value is MAX_FIT = (TIER3 *
COUNT) + (TIER2 * COUNT) + (TIER1 * COUNT) if
the result generated by the chromosome matches the
target perfectly every time we run the test.

Once we finish evaluating the fitness values of all the
chromosomes in the current generation by repeating the
process above, new parents are selected, GA operators
are applied, and a new generation of chromosomes are
born. The whole program is eventually completed either
when we hit the MAX_GENERATIONS threshold (3000
is enough for simple function like x+y+z, but we could
tune it larger for some more complicated functions), or
the condition for accelerated learning is satisfied (section
2.2).

4 Java Expression Library (JEL)
To increase the flexibility and ease of use of our

system, we employ the Java Expressions Library (JEL)
developed by Konstantin L. Metlov and offered free of
charge under the GNU General Public License. Utilizing
the JEL, we are able to receive equations in the form of
strings and evaluate them. Methods of the JEL receive
the string expression and convert it into a Java class that
is then dynamically loaded into the virtual machine,
ready for evaluation. Please refer to
http://galaxy.fzu.cz/JEL/ for more information on JEL.

5 Running Result Analysis
To present the output results we have run the system

on the indicated function several times and with various
parameters to indicate how different program lengths and
probabilities affect the runtime and success of the
algorithm. Particularly, in the following, N represents
MAX_CHROMS, Pc represents the probability of
crossover, and Pm represents the probability of mutation.
Basically, N and Pm are the two major GA paparemters
we want to play with.

 f(x,y,z) = xy+z^3

Fig. 4 Time to converge: 4400+ generations

Fig. 5 Time to converge: 1600+ generations

Fig. 6 Time to converge: 400+ generations

The performance of GA described above depends
largely upon the following two factors: the level of the
population diversity, i.e., the number of different GA
chromosomes. The larger the number of chromosomes
(N) in a GA generation, the more diversified they are, the

better the chances our system will converge to the target
(shown in figures 4 and 5). Another one is the extent to
which GA individuals are able to interact with each other
to produce effective offspring. This is mainly achieved
through GA operators, in particular the mutation.
Changing the probability of mutation (Pm) from 0.01 to
0.05 had a noticeable positive effect on the speed to
converge (shown in figure 6).

 f(x,y,) = (x*y)+(y^2)+z

Fitness over time (N = 3000, Pc= 0.8, Pm = 0.02)

Time

(1=100generations)

Fitness

0 10 20 30 40 50 60

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Fig. 7 Time to converge: 6000+ generations

 f(x,y,) = x^5+2y

Fitness over time (N = 5000, Pc= 0.8, Pm = 0.02)

Time

(1=100generations)

Fitness

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Fig. 8 Time to converge: 4200+ generations

As shown in figures 7 and 8, our GA system is smart
enough to evolve some fairly complicated mathematical
functions.

6 Conclusions
The computers have become indispensable in our

everyday life. They act intelligently to help us in
typewriting, car controlling, communication systems,
data base systems, so on and on. In addition to taking

advantage of them, our computer science students should
be given chances to learn, discover, and even implement
those intelligent systems – what makes them intelligent?
How they are built? How do we choose the right tool for
the job? Etc. In, this paper, I answer these questions by
presenting a team project three of my students did when
they took my AI course. The system they built took use
of Genetic Algorithm – an important branch of AI – to
evolve sequence of simple instructions to a complex math
function, with the help of Java Expressions Library and a
stack-based virtual machine. As demonstrated and
discussed above, the project (among other two team
projects) made the course a huge success on introducing
AI principles to students and retaining them for in-depth
developments. Future tasks include expanding the set of
instructions recognized by the stack machine such that
even more complicated functions can be evolved in a
reasonable time and improving the graphical user
interface to enhance the usability and flexibility of the
system.

7 References
[1] M. Negnevitsky, Artificial Intelligence, A Guide to

Intelligent Systems, Addison Wesley Press, 2005.
[2] M. T. Jones, AI Application Programming, Charles

River Media, 2003.
[3] D.S. Burke, K.A. De Jong, J.J. Grefenstette, C.L.

Ramsey, and A.S. Wu, “Putting more genetics in
genetic algorithms”, Evolutionary Computation,
Vol. 6, No. 1, pp. 387-410, 1998.

[4] G. Syswerda, “Schedule optimisation using genetic
algorithms”, Handbook of Genetic Algorithms, pp.
332-349, 1991.

[5] J. Holland, Adaptation in Natural and Artificial
Systems, Ann Arbor: the University of Michigan
Press, 1975.

[6] Z. Xu, A.S. Wu, “Adhoc-like routing in wired
networks with genetic algorithms”, Ad hoc networks
2, Vol.2, No.3, pp. 255-263, July 2004.

