
Evolving Mathematical Functions with Genetic 
Algorithms - A Team Project on Artificial Intelligence 

ZHIGUANG XU, CHRIS NEASBITT, JARED SUMMERS, BILL CONKLING
Department of Math and Computer Science

Valdosta State University
Valdosta Georgia, U.S.A.

Abstract - In contrast to most of the senior level 
Artificial Intelligence (AI) courses where AI is taught in 
the jargon of theoretical computer science with crowd of 
complex matrix algebra and differential equations, I 
demystify the subjects and demonstrate that most 
fundamental ideas behind AI like Neural Networks, 
Genetic Algorithms, and Fuzzy Logic, etc, are 
wonderfully simple and straightforward. I give students 
team projects as opportunities to be exposed to how 
intelligent systems are actually built up and implemented. 
In this paper, we discuss such a project developed by a 
group of three students for evolving mathematical 
functions with Genetic Algorithms (GA) in Java. In the 
project, GA is used to solve a symbolic optimization 
problem where sequence of instructions collectively 
forming a candidate math function is evolved to represent 
a reasonably complicated target math function. Students 
were very interested and deeply involved in the 
development of this project since they actually applied 
the GA theory in practice. And this is the best way AI can 
be taught and grow, as I sincerely believe.
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1 Introduction
Traditionally, Artificial Intelligence (AI) is taught as 

a senior level theoretical computer science course. Most 
of the literature on AI is expressed in the jargon of 
computer science, and crowed with complex matrix 
manipulations and differential equations [1]. This, of 
course on one hand, makes the subjects sufficiently 
respectful, but on the other hand, lacks of the applied 
opportunities that the students can take to implement the 
ideas behind those complicated mathematical formulas 
and solve some real-world problems. My goal of teaching 
AI is to demystify some popular AI algorithms so that our 
undergraduate computer science students without hard-
core math background can still witness that the AI-based 
intelligent programs they write themselves are able to 
solve otherwise-hard-to-solve problems. As a result, 
students very much attracted in this way are more likely 
willing to make more efforts to explore AI in depth and 
show their creativity in contributing to this exciting area 
in the future. 

In this paper, I will discuss a team project three of 
my students did when they took my CS4820 Artificial 
Intelligence course in the fall of 2005. In the project, 
students were asked to use GA to solve a symbolic 

optimization problem where sequence of instructions 
collectively forming a candidate math function is evolved 
to represent a reasonably complicated target math 
function. The candidate function, which naturally 
becomes a GA individual/chromosome, is evaluated on a 
STack-based virtual Machine (STM). The target function 
is received in the form of human-readable strings and 
compiled directly into Java bytecode via Java 
Expressions Library (JEL). The fitness value of each 
individual/chromosome function, which is what GA tries 
to optimize, is the difference between the resulting values 
generated by STM to what is expected per our JEL-
parsed target function. Details of the project will be 
presented in the subsequent sections in this paper. As 
witnessed by the running outputs, our GA system is able 
to quickly converge to the desired target, given that the 
values of various GA parameters are appropriately set up. 
(Besides the GA project, in the same course, there are 
also other two AI projects on Artificial Neural Networks 
and Fuzzy Logic respectively, which I will discuss in 
other papers.) Students are motivated to create a 
generalized genetic algorithm simulation that follows the 
principles of object-oriented design to deliver 
extensibility and ease of use. In this project, the interface 
between the AI core and its application (i.e. the evolution 
of sequence of instructions to a math formula) is clearly 
established. Therefore, the intact core could in the future 
potentially solve problems of interest to students such as 
Hamiltonian Path problems and others in the realms of 
linear algebra and graph theory. This project comes with 
a simple Graphical User Interface (GUI). The GUI allows 
the user to run the program without any knowledge of the 
command prompt. It offers easy access to change any 
variable without needing to know any commands or use 
any command line arguments. For any user not familiar 
with the command line they can still use the program and 
see very clear output. The running output data are 
automatically redirected to scilab, a free matlab-like 
scientific software package, and plotted as figures for 
further performance evaluation. 

In the following, I start to present implementation of 
GA as a general tool. Important GA components like GA 
operators, GA fitness evaluation process, etc, are 
explored in depth. Then I will discuss a Stack-based 
virtual Machine (STM) based on which the candidate 
functions generated by GA are evaluated. The STM idea 
is inspired by a similar example in [2]. Java Expressions 
Library (JEL) will be introduced next as a handy tool that 
gives the project the ability to accept any string-based 



target function that users type in at runtime without the 
use of any external file or the necessity of restarting the 
program. Finally, some sample running output figures 
obtained by executing the project and plotted in scilab are 
presented and discussed. Apparently, GA is able to
successfully converge to some fairly complicated target 
functions in some reasonable time. We will conclude the 
paper with our conclusions and future developments. 
Figure 1 shows an overview of the project.
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Fig. 1 Overview of the project

2 Implement Genetic Algorithms 
(GA) as A General Tool

In natural evolution, species search for increasingly 
beneficial adaptations for survival within their complex 
environments. The search takes place in the species’ 
chromosomes where changes, and their effects, are 
graded by the survival and reproduction of the species. 
Survival of the fittest in nature is the ultimate fitness 
function [1]. The Genetic Algorithms (GA), developed by 
John Holland [5] to simulate the natural evolution, is a 
search algorithm that operates over a population of 
encoded candidate solutions to solve a given problem. In 
this project, students are asked to implement in Java a 
full-fledged GA core as a general tool that they can 
utilize to tackle with various problems. Figure 2 [1] 
illustrates the flow chart of a basic GA. Some other 
interesting developments in GA could be found in [3,4,6]

2.1 GA Individuals
First of all, MAX_CHROMS numbers of 

individuals (or interchangeably called chromosomes) are
generated. Each chromosome contains 
MAX_PROGRAMS genes, where MAX_CHROMS and 
MAX_PROGRAMS are typically application-dependent 
and adjustable constants. Each gene, typed as an integer, 
is initially assigned a value randomly picked from a valid 
range, which is also application-dependent.  Note, for 
simplicity, in this project, MAX_CHROMS, 
MAX_PROGRAMS, and valid range of gene values are 
all defined as constants and we will discuss them later, 
but in reality, different chromosomes can have different 
number of genes, and each gene can be initialised from 
different sets of values.

2.2 GA Termination Criteria
Right after every new generation of chromosomes 

including the initial one is populated, the fitness value of 
each chromosome is evaluated based on some 
application-defined process. We will discuss such a 
process later in section 3.

Start

Generate a polulation of individuals size MAX_IND:
x(1),x(2), ... x(MAX_IND)

Each individual contains various lengths of genes

Calculate the fitness of each individual :
f(x(1)),f(x(2)), ... f(x(MAX_IND))

Is the termination criterion
satisfied?

Select a pair of individuals for mating:
Roulette wheel selection

With the crossover probability Pc, exchange parts of two selected individuals
and create two offspring

With the mutation probability Pm, randomly change the gene values in the
two offspring individuals

Place the resulting individuals in the new population

Is the size of the new population
equal to MAX_IND?

No

Replace the current individual population with the new population

End

No

Yes

Yes

Fig. 2 Flow Chart of a Basic GA

Next, we need to determine if it is time to terminate 
the program, which is typically governed by a constant 
MAX_GENERATIONS. When GA has experienced 
MAX_GENERATIONS number of generations, we quit. 
But sometimes, it is hard to set up this threshold value as 
a fixed figure – on one hand, if we set it too large, when 
testing simple functions, you have to wait a unnecessarily 
long time until the program stops by itself even though 
you knew it has converged and solved the problem long 
time ago; on the other hand, if you set it too small, when 
testing relatively more complicated functions, you have 
to take the risk of terminating the GA program too early. 
A better way is to initialize the constant with a large 
number first, and adjust it dynamically while the program 
is running (we call this accelerated learning). As students 
did in this project, accelerated learning has been 
implemented by tracking a run which corresponds to 
times when the system has reached and sustained a peak 
of maximum fitness value with few interruptions, after a 



sufficiently long run the system may terminate prior to 
the MAX_GENERATIONS. 

2.3 Selecting Parents: Roulette Wheel 
Selection
If neither the condition for accelerated learning is 

satisfied, nor has the maximum number of generation 
passed, we need to select a pair of chromosomes as 
parents for mating from the current population. Parent 
chromosomes are selected with a probability related to 
their fitness. The higher the fitness value, the healthier 
the chromosome is, and the better chance it is selected. 
The most popular selection algorithm is Roulette Wheel 
Selection (RWS). It operates on the principal that a 
chromosome’s chances of being selected are proportional 
to that chromosome’s fitness compared to the overall
population. Unfortunately, this classic RWS won’t work 
well for our GA system with such a large number of 
chromosomes (sometimes 3000+ chromosomes per 
generation). Therefore in this project, we calculate this 
probability as a chromosome’s fitness divided by the max
fitness value in the current generation. We then check to 
ensure that the chromosome under study is at least greater 
than the minimum fitness of the generation. In other 
words, we don’t select from the least fit of the population 
(elitist in some manner). We then generate a random 
number (between 0 and 1) and compare it to our 
probability value. If the random number is less than the 
probability value, we select the parent. Otherwise, we 
continue to the next chromosome. The parent selection 
process is very important to GA evolution because it 
makes sure that the next generation is better than its 
predecessor with respect to the distance to the target and 
that evolution is going towards the right direction.

2.4 GA Operators
Once two parents are selected with probability 

related to their fitness values, the following GA operators 
are applied for reproducing offspring chromosomes.
 We first check to see if we are to perform the 
crossover operation governed by the probability Pc
(typical valued as 0.7~0.8). If so, we calculate the 
crossover point by random based on the length of the 
chromosomes. Then the two parent chromosomes break 
at the crossover point and exchange the chromosome 
parts. Mare sure the crossover point is neither the first nor 
last gene of the chromosome since if so there will be no 
crossover actually occurring. Note, it is perfectly possible 
that the offspring chromosomes are just exact clones of 
their parents if we choose not to crossover.
 The next step is to perform mutation. Each gene has 
a very small chance to be simply redefined to a new valid 
value, based on the mutation probability Pm (typical 
valued as 0.01~0.02). The role of mutation is to provide a 
guarentee that the GA search is not trapped on a local 
optimum. The mutation probability Pm can not be 
assigned a harmfully big number since if so it will make 
the system unstable. The range of valid values for genes 

is application dependent and will be discussed in section 
3.
The parent selection and offspring reproduction process 
described above continues until the size of the new 
generation reaches MAX_CHROMS, at which time we 
replace the old generation with the new one. Generation 
after generation, GA attempts to maintain the balance 
between the exploration for generating new chromosomes 
and exploitation of discovered information which fits the 
environment best. As a result, GA is expected to solve 
and optimise solutions to problems that are otherwise 
very hard to solve.

3 Stack-based Virtual Machine 
(STM)

As described in section 2, it is up to the application 
what the range of valid gene values is, what a 
chromosome (i.e. a sequence of genes) represents, and 
how to evaluate the fitness of a chromosome. 

Table 1: Simple Instruction Set

Instruction Description

DUP Duplicate the top of the stack (A 
=> AA)

SWAP Swap the top two elements of the 
stack (AB => BA)

MUL Multiply the top two elements of 
the stack (2 3 => 6)

ADD Add the top two elements of the 
stack (2 3 => 5)

OVER Duplicate the second item on the 
stack (AB => BAB)

NOP No operation (filler)

Consider a simple instruction set for a stack 
architecture on a virtual computer [2]. The virtual 
machine has no registers, only a stack for which 
instructions can manipulate the values on the stack. Our 
virtual machine recognizes only 6 instructions, shown in 
the table 1. These instructions are very simple, but can be 
used to solve a variety of functions. For example, if we 
want to compute the square of the top element of the 
stack, the following instruction sequence could be used 
(assuming the top of the stack contains our input value): 
DUP_MUL. This sequence duplicates the top of the 
stack, then multiplies the two together, and finally pushes 
the product back to the top of the stack. Note, NOP can 
be inserted anywhere in the instruction sequence without 
changing the definition of the corresponding function 
(e.g. NOP_DUP_ NOP_ NOP_ MUL is the same as 
DUP_ MUL).  



3.1 STM instructions to GA Chromosomes
The range of valid values for each GA gene is 

naturally the set of six STM instructions above. When 
being initialized or mutated, GA genes are not allowed to 
have any other out-of-range value. Consequently, a GA 
chromosome is constructed as a sequence of valid STM 
instructions, which potentially respresents a STM-
encoded mathematical function that aims at matching the 
user-provided target function. For example, if the stack 
contains three independent variables x, y, and z, from to 
to bottom, the chromosome 
MUL_SWAP_DUP_SWAP_OVER_NOP_ADD_ADD_NOP
_SWAP_NOP_ADD will represent 

zxyzyxf 3),,(  . The figure 3 shows the 

dynamics of this chromosome.
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Fig. 3 A GA Chromosome Evaluated on the STM

Remember in section 2.1, we mentioned 
MAX_PROGRAM as the length of chromosomes and 
MAX_CHROMS as the size of a GA generation. It 
turned out that 12 and 3000 are some reasonable values 
from them respectively. They are surely adjustable.

3.2 Fitness Evaluation
The same group of input independent variable 

values will be presented to both the JEL-parsed user-
defined target function and the candidate function in the 
form of a STM-based GA chromosome (section 3.1).  As 
a result, two output values are computed. 

Now, how do we evaluate the fitness of this 
chromosome? This is where creativity comes into play. 
There are tons of methods out there we can choose from. 
But what we need to keep in our mind is – what we 
eventually want is the smaller the difference between the 
target output and the output produced by the function 
encoded in the chromosome (or the smaller the error), 
the larger the fitness of that chromosome. Next, I will 
present what we did, and it seemed to work.

 If the STM that evaluated the candidate function 
exited successfully (no error was reported), we give it a 
TIER1 value (1, for example) and continue to the next 
step. Otherwise we just give it a zero and quit.

 If only one value was left on the stack, we add a 
TIER2 value (20, for example) to the current fitness and 
continue. Otherwise we quit with just a TIER1 value.
 If the top of the stack was the correct value (the same 
as the target output), we add in a TIER3 value (400, for 
example) to the current fitness. Otherwise, we add to it a 
faction of the TIRE3 value with regard to the error, i.e., 

3
1

1
TIER

error



 where error is defined as the 

absolute difference between the two output values.

To avoid a chromosome from providing the correct 
answer, but working on one particular group of input 
variable values only, we test the chromosome a number 
of times with different combinations of input variable 
values (e.g. 10 times defined by the constant COUNT). 
From the discussion above, we can easily see that the 
largest possible fitness value is MAX_FIT  = (TIER3 * 
COUNT) + (TIER2 * COUNT) + (TIER1 * COUNT) if 
the result generated by the chromosome matches the 
target perfectly every time we run the test.

Once we finish evaluating the fitness values of all the 
chromosomes in the current generation by repeating the 
process above, new parents are selected, GA operators 
are applied, and a new generation of chromosomes are 
born. The whole program is eventually completed either 
when we hit the MAX_GENERATIONS threshold (3000 
is enough for simple function like x+y+z, but we could 
tune it larger for some more complicated functions), or 
the condition for accelerated learning is satisfied (section 
2.2).

4 Java Expression Library (JEL)
To increase the flexibility and ease of use of our 

system, we employ the Java Expressions Library (JEL) 
developed by Konstantin L. Metlov and offered free of 
charge under the GNU General Public License.  Utilizing 
the JEL, we are able to receive equations in the form of 
strings and evaluate them.  Methods of the JEL receive 
the string expression and convert it into a Java class that 
is then dynamically loaded into the virtual machine, 
ready for evaluation. Please refer to 
http://galaxy.fzu.cz/JEL/ for more information on JEL.

5 Running Result Analysis
To present the output results we have run the system 

on the indicated function several times and with various 
parameters to indicate how different program lengths and 
probabilities affect the runtime and success of the 
algorithm. Particularly, in the following, N represents 
MAX_CHROMS, Pc represents the probability of 
crossover, and Pm represents the probability of mutation. 
Basically, N and Pm are the two major GA paparemters 
we want to play with.

 f(x,y,z) = xy+z^3



Fig. 4  Time to converge: 4400+ generations

Fig. 5  Time to converge: 1600+ generations

Fig. 6  Time to converge: 400+ generations

The performance of GA described above depends 
largely upon the following two factors: the level of the 
population diversity, i.e., the number of different GA 
chromosomes. The larger the number of chromosomes 
(N) in a GA generation, the more diversified they are, the 

better the chances our system will converge to the target 
(shown in figures 4 and 5).  Another one is the extent to 
which GA individuals are able to interact with each other 
to produce effective offspring. This is mainly achieved 
through GA operators, in particular the mutation. 
Changing the probability of mutation (Pm) from 0.01 to 
0.05 had a noticeable positive effect on the speed to 
converge (shown in figure 6). 

 f(x,y,) = (x*y)+(y^2)+z

Fitness over time (N = 3000, Pc= 0.8, Pm = 0.02)
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Fig. 7  Time to converge: 6000+ generations

 f(x,y,) = x^5+2y

Fitness over time (N = 5000, Pc= 0.8, Pm = 0.02)
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Fig. 8  Time to converge: 4200+ generations

As shown in figures 7 and 8, our GA system is smart 
enough to evolve some fairly complicated mathematical 
functions.

6 Conclusions
The computers have become indispensable in our 

everyday life. They act intelligently to help us in 
typewriting, car controlling, communication systems, 
data base systems, so on and on. In addition to taking 



advantage of them, our computer science students should 
be given chances to learn, discover, and even implement 
those intelligent systems – what makes them intelligent? 
How they are built? How do we choose the right tool for 
the job? Etc. In, this paper, I answer these questions by 
presenting a team project three of my students did when 
they took my AI course. The system they built took use 
of Genetic Algorithm – an important branch of AI – to 
evolve sequence of simple instructions to a complex math 
function, with the help of Java Expressions Library and a 
stack-based virtual machine. As demonstrated and 
discussed above, the project (among other two team 
projects) made the course a huge success on introducing 
AI principles to students and retaining them for in-depth 
developments. Future tasks include expanding the set of 
instructions recognized by the stack machine such that 
even more complicated functions can be evolved in a 
reasonable time and improving the graphical user 
interface to enhance the usability and flexibility of the 
system.
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